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I. I NTRODLCTION

LetFbe a given function class and let the functionals L(fJ, LI(f) ... ·. I.NU)
be defined on F. In recent years the problem of constructing methods for the
approximate evaluation of the functional Let), fe F which use only the
information

T(f) U-I(f) .. ·.. Lv(fJ)

and possess certain good extremal properties, became a subject of investiga­
tion for many authors.

We shall search for a method of approximation of L(f) with minimal
error in the class F. Precisely, let a(L, T) denote the set of all methods S

which are generated by a real function SUI'"'' 'N) of N variables as

S: L(f) ~ S(LJCj), ... , L\U») Sen

for every f E' F. A method a* for which

sup. L(f) - S"'(f)
(r=[

inf sup LU)
\ • .,(L. T) Ie F

S(n

is said to be best for the class F with respect to the information T.
In the case when L(f) f(x), x is fixed in [a, b], and TU) consists 01" values

of the functionf and its derivatives at /) discrete points Xl .... ' XI/ ' the error

R: sup i!(x)
(<- r

S*(f)

of the best method depends on X and {Xj':~ : R R(x: Xl .... ' XI/) (occa~ionally

shortened to R(x». Let i R I ~UP/f(".I,) R(t: X, ..... x,,): . The nodes for
which R attains its minimal value are called optimaL Let SU)(.v) be the
approximate value of f(x) calculated by a best method with optimal nodes.
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Clearly S(f)(x) is a function of x. The method
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f(x) ~ S(f)(x) forxE[a.b]

is an optimal method of approximation ofl(x) for the class F.
The extremal interpolation problem stated in this way was solved entirely

in [I] for F, the set of all real functions in [- 1, I] which are analytic and
bounded by 1 in the unit circle.

1, 2•... , n; k ~. O. I •... , m:.

and in [2] for

XII I.

F

T(Il

It',~'\!\4: [a, h]) :.~ :fE CIIII[a. h]: p'li abs. canst..

r I. 2.....
:fll)(x,). i I. 2..... II: k 0, I. .... r -- I I.

a

fll) "

I q

.Y II

Atl.
(:G.

b.

Perhaps the most interesting case apears when

Tel) U(.\'o).f(xJ ..... f(xf/)1

and F W,;')(M; [a, b]). 1'= 1,2,.... It follows from the results obtained in
[2] that for I' I and nodes {x!.'};; fixed in [a. b] the best method of approxi­
mation ofl(x) is

for x: x inf x Xi '

The optimal nodes are also determined.
The purpose of this paper is to construct an optimal method of approxima­

tion of fIx) when I' ~ 2, q w. We show that the optimal method is an
interpolation off(x) at the nodes by a polygonal line.

2. PRELIMINARIES

Our study in the sequel is based on the following lemma of Smoljak [3]
(see also [4]).

LEMMA I. Let H be a linear metric space and F is concex centrally sym­
metrical set in H with a center of symmetry O. Suppose the functionals L(f),
rLI(f):~ (Ire linear and defined on H. If sup{L(f) : f E Fo1 < w where

1.2..... N:.
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then there exist numbers C1 , C~ ,... , C.v such that

R
I .

sup I '-U)
./'f

\

I cl.'-/Jn!
i. I

is equal to the error of the best method, i.e., there is a linear best method of
approximation of L(f).

The proof of this lemma contains a useful result which we shall formulate
as a separate proposition.

COROLLARY I. R sup{L(f):fF f~):.

As usual W~'I[a, 17] will denote the Sobolev space

:/F 0' II[a, 17] : fl' I) abs. cont.,f"l ( L,[a, b]).

We shall make use of the following resull of Karlin [5].

TIlEOREVl A. Let the points {XI.·:; satisfy

XN 17

and {Yi}; be a gil'en sequence of real numbers. The extrenwl problem

min{f .:fEi2"I,

Do: UE W~I)[a, 17]:1(.\,)

has a solution of the form

1,2, ... , N).

, 1 II a/ i c t
f

I Ii ..

1

2I( 1)'(1
i-}

~i)' I (I)

for some real constants a o , ... , a'-1 and c, and for a
lI'ith k N -. r.

~I <... , < £:1.-1 h

Karlin has proved this theorem in a more general form, which allows for
the interpolation of consecutive derivatives as well. Another proof can be
found in [6]. Note that function (I) is called perfect spline.
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3. MAIN RESULTS

First we shall prove
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LEMMA 2. Suppose x E [a, b] and x, (3 be such that a IX (3 b. Then
thejimction ep(t;cx, (3) -~ M(t - cx)((3- t );'2 is a solution olthe extremal problem

sup{lf(x) :fEF(ix,(3)).

F(x, (3) :-c {fE W;z)(M; [a, bJ):f(,x) /((3)= 0:.

Proof Let f[x, eX, (3] denote the divided difference of the function f(t)
based on the points X,x, (3. By Peano's theorem we get the integral represen­
tation

where

.. f)

f[·\', ;x. (3] f T(1: .Y. x, (3) /"(1) dt
."

(2)

T(r) T(I: .Y, .x, (3)
(x t)

(x~-~~)(x-- -~)

(,X t) ,

2h(;-"---'y)

((3 t),
2h( ~---- -:\.) ,

2h -_c (3 -- C\ and the truncated function u, is defined by u. == max(u, 0). Let
us assume now thatl E F(lx, (3). Then, from (2)

.,..11

f(x) =. (x-x)(\ ,e) I T( t) f"(I) tit
,·u

and consequently

/(x) IH(x r
l)

x)(y - (3) T(1)1 dt. (3)

Expression (2) for f[x,x, (3] is a special case of the formula obtained by
Tschakaloff [7, Theorem 2] for the divided difference of the function f based
on the points t1 , f z ,... , f", with multiplicities VI , V2 , ••• , V)" , respectively. It
follows by the cited theorem that T(t) () for all f and f~ T(t) dt--}. That
and (3) give

sup f(x)
(r::F(\.d)

I (p(x;x, (3)!. (4)

Now we observe that <p(x;:x, (3) E F(et, (3): the upper bound in (4) is actually
attained. The proof is complete.

THEOREM I. Let the nodes {tic]!: be defined by

tl, a (21Z -- I) h L 2kh, (k c= O. 1, .... n),

h = (b - a)/(2(/1.L 2J / 2 - I)).
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f(x) ~ 11,(x) for x .fl., (/-; 1,2, ... , II)

r [a, ~d, .-~, [~"-I ,b], .1~. [~/l ~/.], (/-; 2, 3, ... , II• 1

IJx) f(~/.I)((X ~/.·)/(~/.-l - . ~d) f(~/.)((x ~/. dMI ~I. -d))

I),

is all optimal method of approximatioll o[/(x) /i'om the class W;2)( /1'1; [a, b])
with respect to the information of the typc

a x" X,, b.

The ('1'1'01' R*(x) of th(' optimal IIl('thod has III(' Ullu('

R*(x) J'v/(x - ~H)(~' x)/2 for X >~- ~ (i I, 2..... II)

and

R* M((b a)!(11 11 '2 1))2/8.

Proof Let Ro(x) R"V(; ~" .... , ~,,) denote the error of the best method
of approximation of!(x) based on the nodes {~kl~. We shall show that

M((b a)i(1I (212

To establish (5), define the function '/(1) by

1)f/8. ( 5)

(p(t)

It is clear that

for t f tT, (j I. 2, ... , II).

0, L. ... II:.

The same holds for the function '!(t). Now suppose that X F.f;. By
Corollary 1 we have

sup f(x)
IEFIl(~)

On the other hand, by Lemma 2

max(,!(x). (/'(x)) q(.Y) ,

sup j(.\')
FL;; -1,(;)

These two inequalities give R,,(x) '1'(x) for all.Y [a, b]. Further. after
simple computations we obtain (5).

The second step of our proof is to show that the nodes {~/.::; arc optimal.
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1n order to prove this let us assume that the nodes {XIJ~, a Xo < ... <
X n ,,:; b are optimal, i.e.,

max I R(t; .ro , ... , x,,) = min max I R(t; Yo , ... , Yn»)'
tEla, oj (!lk)~ tda. oj

Therefore the error R(x) of the best method based on the nodes {XIJ:: satisfies
the inequality

R

Let y E [a, b] be such that R(y) = R . By Corollary 1

R(y) ~= sup j(y).
kF,,(x)

We shall prove that there exists a function g(t) E Fo(x) of the form

(6)

., IyJ~ (7)

where (Ill' (II , C are real numbers, a < .1'1 < ... .1'/,1 < b, k ~ f1 for which

g(y) = R(y). (8)

Indeed, denote by a the set of all functions fE Fo(x) for which fey) 0== R(y)
and by a o the set of the solutions of the extremal problem

inf{1 I"i:fE go]

go:= {fE W~2)[a, b]:j(y) = l'/(xk) = 0, k = 0, 1, ... ,1/:.
(9)

It is easily seen that there is one-to-one correspondence between a and a o .

Moreover, for every fE ao the function Mf(t)/IIJ" I belongs to the set a. But
problem (9) has a perfect spline solution of the form (7). This follows from
Theorem A stated in the beginning. Consequently there is a function g(t)
satisfying (8). The special form of get) makes it possible to find the number of
the zeros of g'(t) in [a, b]. We know that get) has at least f1 + I zeros: Xo ,... ,

x" . By Rolle's theorem it follows that g'(t) has at least f1 zeros. But g"(t) is a
piecewise constant function with at most f1 .- I discontinuities and conse­
quently g'(t) has n zeros at most. Hence g'(t) has exact f1 zeros. Let us denote
them by 1, ,.. ·,1" . Put for convenience Til'" a hll , b .- 1" =~ hOI '

Assume that

1;' 1- 1; h; (i= 1,2,... ,11 - I).

640 ,/20/'3-3

(10)
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Since ! g
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g(y) ~•.• R(y)~. RI, (6) gives

g Ro (I I)

Therefore ! g(a)il Ro !' On the other hand g'(t)

a t 7)1 . Then, by Taylor's formula

.1;1

, g( 7)1)' g(a)! I g'(t) ilt
'u

g(a) 2 Ro Ro

But this inequality is contradictory to (II). Thus

In the same way we find that

Next we have

( 12)

( 13)

( 14)

rl-l

L hi h a ho - h n h (/ 4( Ro )I,C.

l I

Thus there exists at least one i, I n I, such that

hi (b -- (/ - 4(i ROi )l2)/(n I).

Since

( 15)

I.C' I g'(t) ilt I /11h//4,

and remembering that 7)i and 7)i/1 are successive zeros of g'(t), we have
g(7)i) 1 1 g(7)ii1)i -~ Mhl/4. It follows from this relation that one of the

quantities , g('],) I or i g("'7i1-1)i must be greater than or equal to Mh,2/8.
Suppose that

(16)

On the other hand, from (11) i g(7)Ji Ro .So

An elementary calculation gives

M((b ~- a)/(I1'- 21 / 2 - 1))2/8 (17)
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There are now two cases:
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(a) At least one of the inequalities (13), (14), of (15) is strict;

(b) none of (13), (14), and (15) is strict.

In case (a) (16) and consequently (17) will be strict and that will contradict
with (5). Therefore

hi (b - a 4(! Ro 1!)1/2)/(n - I).

Then we have from (J I) Ro I g(a) - 2 Ro 1
g(a) Ro . By Taylor's formula

Ro 1 which produces

g(x) r
X

g'(t) dr.
~ II

Taking into account that g'(t) is a continuous piecewise linear function with
: g"(t)! ==- M and g'(Yji) °(i ~ 1,2, ... , n) we obtain

g(~J = ° (i 0,1, .... 11).

But g(t) has at most n;- I zeros and they are equal to {XI,:;;' Thus t,
Xi (i 0, I.... , n). So we get that the nodes g:/.:;; are optimal. The second part
of our theorem is proved. It remains to construct the optimal method. i.e.,
the best method for the nodes {fIJ;;.

In order to do that let us carefully consider the following relation which
follows by using the function cp(t) defined in the first part of the proof.

sup fix) == sup fix)
(c__ F[)(~) fEF(:; iJ i :-1)

for X E:1-, 1 (i 0, I, ... , 11 I).

This, together with Corollary I, shows that the error of the best method 0,

approximation of f(x), x E :7;11 based on the points fi and t,.l only, is equal
to the error of the optimal method. So our problem reduces to the simple one:
For every x from.r,.l • i ~ 0. I.... , 11 - I we must construct the best method

fix) .~ S(f)(x)

with respect to the information {f(fJ,f(fi+l)}' Because of Lemma 1 we can
confine ourself to the linear methods. First we see that the best method must
be precise for polynomials of degree less than or equal to I. Indeed, suppose
that the method
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is a best one. Making use of Taylor's formula we get

f(x)

( I A;(x) - Bi(x)) f(a) L\ a A;(.\)(~, al
./,

Bi(X)(~; 1 a)) ('(a)
.1"

fJ(f) f"(t) dT

where the function fJ(r) is bounded. The expressions in front off(a) andl'(a)
must be equal to zero. for otherwise the above expression for the error can
become sufficiently large for certain linear functions. But these two conditions
define A;(x) and B,(x) uniquely

A,(x) (x-~, I)!(~' ~i 1)'

BJ,() ~c (x - O/(C \- ~,).

The theorem is proved.
We have found that the nodes of the optimal formula are expressed in

terms of the irrational number 21/2. This makes the formula rather difficult
for practical calculations. For this reason we shall consider formulas with
nodes

X lI 1 "'--_ X n b. ( 18)

Then the following can be proved.

THlORE'\1 2. The meThod

Il'here

fix) ~ I,(x) for x E [y,. r;+d (i ..~ O. I..... 11 I).

Yi c., a ih (i = O. 1•...• 11). h (b- a)/n.

1,(x)~f(Y,)(X-Yif\)/(Y' r,i\): f(Y"j)(x-yJ/(Y'1 r,).

is all opTimal method of approximation oFf(x) from the class W~21(M; [a. b])
with respect to the information {{(xu)•.... f(xl/ )\. the nodes {XI,' I:; satisfvinfi (18 l,
Here

R(x; Yo. YI ..... YII) M(x .1',)( Y,. I x)/2

M«(b - a)/11)2/8.

The proof is simmilar to that of the previous theorem and we omit the
details.



AN OPTIMAL INTERPOLATION FORMULA

4. ApPLICATIONS
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First, we shall consider the problem of the order of approximation of
functions by polygonal lines. We need some notations. For given numbers
t1 , ...• t", , let H(tl ,... , t",) denote the set of all polygons with vertices at
t! ., .. , f", . Suppose

Let us denote by p(f; x) the unique polygon from H(x] ,... , X"-I) satisfying
the conditions

(k 0, I, ... , n).

Denote else by cnU) the quantity f(x) - pcr x) .. As an application of
Theorem I we shall prove

COROLLARY I.

int sup c,,(f)
:,1'1,::: fEW,~~2l(i\J:rf/.I)I)

:H((h- a)/(n Ins.

Proof It is seen that the method f(x) "" p(f; x), x fCC [a, bJ use~ the
information {f(XIJ)~ only. But the method defined in Theorem I is be,! for
the class W;2)( M: [a, bJ) among all methods of this type. This proves our
statement.

Subbotin and Cernyh have studied in [8, Theorem 4J an analogous problem
under the constraints X o a and X1/ b. I n the same t~lshion as we proved
Corollary I. one can derive from Theorem 2 the following

COROllARY 7 If X o a and X,,-~ h then

inf sup e,,(/)
:",/)~-l fcWr~~2)(Al:r(J,'IP

M(h a) 11)2i8.

We shall now give a lower bound for the best polynomial approximation
of functions from the class W~2)(.M: [a. bJ). The following holds.

COROLLARY 3.

sup inf I jJ
rV~~)(Al:ll/,hl\ 11('''/1

M((h - a)!(11 2! 2 I )F/8.

Proof Let the function qJ(t) be defined as in the proof of Theorem I. By
the Chebyshev alternation theorem we have

inf ' ((
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The norm of Ip is calculated in the previou~ section. Adding sup on the left­
hand side we get the result.

Remark. The general problem (for r I, 2, ... ) of optimal interpolation
was solved in [9] by Micchelli et at.. after we had informed Professor Micchelli
about the main result of our work.
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