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I. INTRODUCTION

Let F be a given function class and let the functionals L{f), Li{(f)..... L.x(f)
be defined on F. In recent years the problem of constructing methods tor the
approximate evaluation of the functional L(f), fe F which use only the
information

7(/¢) — :[41(]‘) ..... L’\I(f)}

and possess certain good extremal properties, became a subject of investiga-
tion for many authors.

We shall search for a method of approximation of L(f) with minimal
error in the class F. Precisely, let o(L, T) denote the set of all methods S
which are generated by a real function S(s, ..... ry) of N variables as

STL(f) = Sy L)) - SO
for every fe F. A method o* for which

sup ¢+ L(f)y — S*(NH int sup 1 L{f) - S(f)
rel Se el L.TY feF
is said to be best for the class F with respect to the information 7.
In the case when L(f) = f(x), xis fixed in [a, b}, and T(f) consists of values
of the function f and its derivatives at # discrete points x, ...., X, . theerror

R sup if(x)  S*([)
roF

of the best method depends on x and {x,.}7 : R~ R(x:x, ... x,) (occastonally

shortened to R(x)). Let | R - sup,..»ni Rt xp ..o x,) . The nodes for

which | R attains its minimal value are called optimai. Let S(f)(x) be the

approximate value of f{x) calculuted by a best method with optimal nodes.
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AN OPTIMAL INTERPOLATION FORMULA 265

Clearly S(f)(x) is a function of x. The method
() = S(fNx) for x € [a, b]

is an optimal method of approximation of f(x) for the class F.

The extremal interpolation problem stated in this way was solved entirely
in [1] for F, the set of all real functions in [—1, 1] which are analytic and
bounded by 1 in the unit circle,

Ty = {fx) i~ 1,2, m k=0, 1,.,m.
-1 <y <l <y,

and in [2] for

F W,f")( M:{a, b)) = {fe C"Va, b]: £V abs. const., fU ., - M.
o 20, | 7} R

(N PG = 1L 20, ko= 0, 1 r— 1L,
a Xy oo x, b

Perhaps the most interesting case apears when

T(f) a {f(-’(n)sf(-\‘l) ----- f(xn):

and F W,f")(M; [a, b)), r =1, 2,.... It follows from the results obtained in
[2] that for r == | and nodes {x,}, fixed in [a, ] the best method of approxi-
mation of f(x) is

S = f(x,) for x: x— x,. = inf v -y,

i

The optimal nodes are also determined.

The purpose of this paper is to construct an optimal method of approxima-
tion of f(x) when r =: 2, ¢ = oo. We show that the optimal method is an
interpolation of f(x) at the nodes by a polygonal line.

2. PRELIMINARIES

Our study in the sequel is based on the following lemma of Smoljak [3]
(see also [4]).

Lemva 1. Let H be a linear metric space and F is convex centrally sym-
metrical set in H with a center of symmetry O. Suppose the functionals 1(f),

{LANY are linear and defined on H. If sup{L(f) : fe F,} < o where

Foi={feF:L(f)=0,k 1,2, .N.
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then there exist numbers C, , C, ..., Cy such that

R -~ sup i L)

foF

A
2 Cildf)

ol

is cqual to the error of the best method, i.c., there is a linear best method of
approximation of L(f).

The proof of this lemma contains a useful result which we shall formulate
as a separate proposition.

COROLLARY . R - sup{L{f): feF,.

As usual W{[a, b] will denote the Sobolev space

1 fe CPa, b) : fU VY abs, cont., 17 e L, a, bl
We shall make use of the following result of Karlin [5]
THEOREM A.

Let the points {x,.\y satisfy

a Xy =

Xy b

and{v,\y be a given sequence of real numbers. The extremal problem

€

min{wf‘"‘; . f m?n;-,

QA fe Wa, b fx)) -

Vool 1 200N
has a solution of the form
vl AN )
Yoagr bl 22y (- &) (1)
i ja
for some real constants ay ..., a,_; and ¢, and for a < & <l <& - b
with k <. N — r.

Karlin has proved this theorem in a more general form, which allows for

the interpolation of consecutive derivatives as well. Another proof can be
found in [6]. Note that function (1) is called perfect spline.



AN OPTIMAL INTERPOLATION FORMULA 267
3. MAIN RESULTS
First we shall prove

LEMMA 2. Suppose x € [a, b] and ~, 5 be such that a -~ « << B < b. Then
the function ot «, ) — M(t — xXB — )/2 is a solution of the extremal problem

sup{| f(x). : f'€ Flx, Bl
Flx, B) i— {f e WEM: [a. b)): fl) = f(B) = OL.

Proof. Let f[x, «, B] denote the divided difference of the function f(r)
based on the points x, «, 8. By Peano’s theorem we get the integral represen-
tation

A0

Sl w, B] == ‘ (1w, B) £ dt

Ca

|7

where

e By o0 e (B )
{1y = 7t Xy~ B) (¥ —a)x - B 2h(x —x)  2h(B -~ x)°
2h == B — « and the truncated function u_ is defined by u.. = max(u, 0). Let
us assume now that fe F(«x, B). Then, from (2)

ﬁwfurwuwm’Umﬂmm

L]

and consequently
f
) M (v (x — By [ e, (3)

Expression (2) for f[x, «, 8] is a special case of the formula obtained by
Tschakaloff [7, Theorem 2] for the divided difference of the function f based
on the points t,, f,,..., t,, with multiplicities v, , v, ,..., v, , respectively. It
follows by the cited theorem that =(+) = 0 for all 7 and ﬂ 7(t) dr == . That
and (3) give

sup L flx) <7 gl x B 4)
reFla.p)
Now we observe that g(x; x, 8) € F(«, B): the upper bound in (4) is actually
attained. The proof is complete.

THEOREM 1. Let the nodes {€,} be defined by

Eo=a -+ (2V2 — 1) h - 2kh, (k =0, 1,.... n),
h=(b—a))2n -+ 212 —1)).
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The method
F(x) =~ [{x) for x .7, . (k L2...0m)

where

7‘1 [aa gl]ﬂ ‘—J/_n B [gnfl ° b]~ //7 [gl =1 = é:/.]* (/‘ i 2’ 3~--~~ n [)-\
L{x) - f(f/ x - g/.»)//(g/,fl ) f(gl.)((-\‘ & 0

is an optimal method of approximation of f(x) from the class W (M [a, b})
with respect to the information of the type

{1 F(X ) FLEDN a - Xy X, - b
The error R*(x) of the optimal method has the value
R¥(x) - Mx — £,.06 )2 forxeZ, . (i 1.2..m
and
R* 1 = M((b--a)(n-1 212 - [)¥8,

Proof.  Let Ry(x) == Ry(xX: & ... £,) denote the error of the best method
of approximation of f(x) based on the nodes {£,};. We shall show that

PRy - M a)i(n - (282 1) (5)
To establish (5), define the function (1) by
@) = (1Y M@t — &_ & )2 forte 7, (j- 1.2, n).
It is clear that
oli)e FyE) :=1{f¢ WEM: [a. b)) f(€,) 0.k O 1. n.

The same holds for the function - ¢(r). Now suppose that xe.7;. By
Corollary | we have

Ry(x) = sup f(x) max(g(x). - (x)) - g(x).
feFy(&)

On the other hand, by Lemma 2

Ry(x) sup  f(v) M(x & E - w2
reFle; 4.¢))
These two inequalities give Ry(x) @(x) for all x & [a. b]. Further. after
simple computations we obtain (5).
The second step of our proof is to show that the nodes {£,!) are optimal.
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In order to prove this let us assume that the nodes {x,};, @ < x, < -+ <
x, < b are optimal, i.e.,
max | R(7; xy,..., X,) = min max | R(; Vg seeer Il

tela, bl {uptg tela,b]

Therefore the error R(x) of the best method based on the nodes {x;}; satisfies
the inequality

PR <Ryl (6)
Let y € [a, b] be such that R(y) = ! R|'. By Corollary |

R(y) = sup fly).

faFy(x)

We shall prove that there exists a function g(r) € Fy(x) of the form
k-1 . N T
gl0) = ay - @t - c[F T2 (= (7)
il N
where a, . @, , ¢ are real numbers, ¢ < y, << - v,y < b, k = n for which

gly) = R(y). (8)

Indeed, denote by o the set of all functions f e Fy(x) for which f(y) = R(y)
and by o, the set of the solutions of the extremal problem

inf{] £ 1: f € £}
Qyi=1{fe Wa, bl: fly) = 1, fixy) = 0, k = 0. 1...., n.

€]

It is easily seen that there is one-to-one correspondence between ¢ and o .
Moreover, for every f e o, the function Mf(t)/|| f"|: belongs to the set a. But
problem (9) has a perfect spline solution of the form (7). This follows from
Theorem A stated in the beginning. Consequently there is a function g(r)
satisfying (8). The special form of g(¢#) makes it possible to find the number of
the zeros of ¢'(r) in [a, b]. We know that g(z) has at least n + [ zeros: xg ,....
X, . By Rolle’s theorem it follows that g'(¢) has at least # zeros. But g"(r) is a
piecewise constant function with at most # —— | discontinuities and conse-
quently ¢'(r) has n zeros at most. Hence g'(r) has exact n zeros. Let us denote
them by %, ,.... 7, . Put for convenience v, — a = hy,, b —n, = h, .

By — Ny (i==1,2,....n— 1.
Assume that

Ao > 2( Ry )V (10)

640/20/3-3
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Since ' gl == gly) = R(y) = | R, (6) gives
glh= Ry . (h

Therefore | g(a)] =2 | R,i. On the other hand  g'(s) M(n, - 1) for
a = t << my . Then, by Taylor’s formula

S|

gl gta) ) g dry
" ‘ (12)
glay - 2 R, R, .
But this inequality is contradictory to (11). Thus
f 20 Ry )2 (13)
In the same way we find that
hy 220 Ry 'R (14)
Next we have
n:l
by ba- hy -h, b a4 R, )
[N
Thus there exists at least one /, | </ <2 n — 1, such that
hi oo (b —a — 4 Ry )V - 1), (15)

Since

PAES]

(1) dt } M4,
and remembering that n, and 7,,, are successive zeros of g'(f), we have
Lgol - gyl = MhAj4. 1t follows from this relation that one of the
quantities | g(n,;)| or | g(x,,,)| must be greater than or equal to Mh3?/8.
Suppose that

MO o AR
8(n — 1) o

L&)l = Mh28 = 16)

On the other hand, from (11) | g(»,)| << R, . . So
M((b — a — 4((l: Ry')**)/(n D)8 - Ry
An elementary calculation gives

M((b — a)l(n = 212 — )8 - R, . (17)
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There are now two cases:

(a) At least one of the inequalities {13), (14), of (15)is strict;
(b) none of (13), (14), and (15) is strict.

In case (a) (16) and consequently (17) will be strict and that will contradict
with (5). Therefore

fy =y, o 200 Ry VR,
hy = (b — a — 4() Ry (n — 1).

Then we have from (11) © R,|| = gla) — 2 Ryl =i R, | which produces
cgla) i Ry . By Taylor’s formula
glx) = Ry . g'(t) dr.

doy

Taking into account that g'(z) is a continuous piecewise linear function with
1g"(t); = Mand g'(s;) — 0(i = 1, 2,..., n) we obtain

gé) =0  (i=0,1,..n).

But g(r) has at most # - | zeros and they are equal to {x,j;. Thus ¢
x; (7 0, 1,..., n). So we get that the nodes {£,}, are optimal. The second part
of our theorem is proved. It remains to construct the optimal method. i.e.,
the best method for the nodes {&;}.

In order to do that let us carefully consider the following relation which
follows by using the function ¢(¢) defined in the first part of the proof.

sup flx) = sup  f(x) for xeJ7,, (=0 1,...,n - 1)

e Fy(g) FeF(5;.6,
This, together with Corollary I, shows that the error of the best method os
approximation of f(x), x € 7;,, based on the points &; and ¢, only, is equal
to the error of the optimal method. So our problem reduces to the simple one:
For every x from 7., ,7 =0, l...., n — 1 we must construct the best method

F(x) ~ S(f)(x)

with respect to the information {f(§,), f(€,.1)}. Because of Lemma | we can
confine ourself to the linear methods. First we see that the best method must
be precise for polynomials of degree less than or equal to 1. Indeed, suppose
that the method

flx) = A f(€) = Bx) f(€,,0), for xe .7,
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is a best one. Making use of Taylor's formula we get
Hx) = (Ax) fE) T BAX) f(E:.0)

(I = AAx) - B [ty - (v @ AAXNE, - @)

BAXNE, \  a) f'la) - | ) [Ty di

where the function 6(r) is bounded. The expressions in front of f(a) and f'(a)
must be equal to zero. for otherwise the above expression for the error can
become sufficiently large for certain linear functions. But these two conditions
define A,(x) and B,(x) uniquely

AAX) == & DIE &,

Bi(x) = (x — §,»),/‘(§,- 1 £)).
The theorem is proved.

We have found that the nodes of the optimal formula are expressed in

terms of the irrational number 212, This makes the formula rather difficult

for practical calculations. For this reason we shall consider formulas with
nodes

(= Xy <o X, =t X, <l X, = b, (18)
Then the following can be proved.
THeoreM 2. The method

fx) & L{x) for velyv,, v, 400G —0,1,.. o= 1),
where
v,=a - th ((=0,]1,..n), h = (b — a)n,
Lxy == fOrx — o)/ v Ao = )i o n)

is an optimal method of approximation of f{x) from the class W' (M: [a, b])

1

with respect to the information { f(xy)-... f(x,), the nodes {x,\, satisfving (18).
Here

R(X: 1y s V) ey 1) M vy x)2

Jor xe v, v, ]and; R M((b - a)in)*8.

The proof is simmilar to that of the previous theorem and we omit the
details.
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4. APPLICATIONS

First, we shall consider the problem of the order of approximation of
functions by polygonal lines. We need some notations. For given numbers
fy i b, , let H(t, ..., 1,) denote the set of all polygons with vertices at
t ... t, . Suppose

d -0 Xy <N < DX, <X, b

Let us denote by p(/f; x) the unique polygon from H(x, ...., x,_,) satistying
the conditions

plfix) = flyy)  th=0,1,.., 1.

Denote else by ¢,(f) the quantity . f(x) — p(/> x):. As an application of
Theorem | we shall prove

COROLLARY 1.

inf sup e df) = Mb — ayfin - 202 — 18,
Lot re W B (A [, n])

Proof. It is seen that the method f(x) = p(f; ), x€ [a, b] uses the
information {f(x,)}, only. But the method defined in Theorem I is best for
the class W(M: [a, b]) among all methods of this type. This proves our
statement.

Subbotin and Cernyh have studied in [8, Theorem 4] an analogous problem
under the constraints x, - « and x,, = b. In the same fashion as we proved
Corollary 1. one can derive from Theorem 2 the following

CoroLLARY 2. Ifx, ~aand x, — b then

inf sup e ) = M{h - aynm?s.

Lot 1T pe WM, 0]

We shall now give a lower bound for the best polynomial approximation
of functions from the class W*'*(M: [a, b]). The following holds.

COROLLARY 3.

sup inf '/ p. MU — a)n 212 1))%8.

e W Do b)) pen,

Proof. Let the function ¢(7) be defined as in the proof of Theorem 1. By
the Chebyshev alternation theorem we have

inf "¢ P -y

pew,
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The norm of ¢ is calculated in the previous section. Adding sup on the left-
hand side we get the result.

Remark.  The general problem (for + 1, 2....) of optimal interpolation

was solved in [9] by Micchelli er al., after we had informed Professor Micchelli
about the main result of our work.

13

0.

(2]

9.
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